资源类型

期刊论文 1661

年份

2024 1

2023 65

2022 110

2021 112

2020 88

2019 117

2018 87

2017 87

2016 70

2015 95

2014 90

2013 67

2012 85

2011 78

2010 83

2009 55

2008 76

2007 90

2006 38

2005 30

展开 ︾

关键词

风险分析 9

有限元 5

ANSYS 4

分析 4

可持续发展 4

对策 4

影响因素 4

数值模拟 4

有限元法 4

裂缝 4

隧道 4

数值分析 3

2035年 2

BNLAS 2

COVID-19 2

DX桩 2

HIV感染孕产妇 2

“一带一路” 2

专利分析 2

展开 ︾

检索范围:

排序: 展示方式:

Finite element analysis of controlled low strength materials

Vahid ALIZADEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1243-1250 doi: 10.1007/s11709-019-0553-3

摘要: Controlled low strength materials (CLSM) are flowable and self-compacting construction materials that have been used in a wide variety of applications. This paper describes the numerical modeling of CLSM fills with finite element method under compression loading and the bond performance of CLSM and steel rebar under pullout loading. The study was conducted using a plastic-damage model which captures the material behavior using both classical theory of elasto-plasticity and continuum damage mechanics. The capability of the finite element approach for the analysis of CLSM fills was assessed by a comparison with the experimental results from a laboratory compression test on CLSM cylinders and pullout tests. The analysis shows that the behavior of a CLSM fill while subject to a failure compression load or pullout tension load can be simulated in a reasonably accurate manner.

关键词: CLSM     finite element method     compressive strength     pullout     numerical modeling     plastic damage model    

Flow, thermal, and vibration analysis using three dimensional finite element analysis for a flux reversal

B. VIDHYA,K. N. SRINIVAS

《能源前沿(英文)》 2016年 第10卷 第4期   页码 424-440 doi: 10.1007/s11708-016-0423-9

摘要: This paper presents the simulation of major mechanical properties of a flux reversal generator (FRG) viz., computational fluid dynamic (CFD), thermal, and vibration. A three-dimensional finite element analysis (FEA) based CFD technique for finding the spread of pressure and air velocity in air regions of the FRG is described. The results of CFD are mainly obtained to fine tune the thermal analysis. Thus, in this focus, a flow analysis assisted thermal analysis is presented to predict the steady state temperature distribution inside FRG. The heat transfer coefficient of all the heat producing inner walls of the machine are evaluated from CFD analysis, which forms the main factor for the prediction of accurate heat distribution. The vibration analysis is illustrated. Major vibration sources such as mechanical, magnetic and applied loads are covered elaborately which consists of a 3D modal analysis to find the natural frequency of FRG, a 3D static stress analysis to predict the deformation of the stator, rotor and shaft for different speeds, and an unbalanced rotor harmonic analysis to find eccentricity of rotor to make sure that the vibration of the rotor is within the acceptable limits. Harmonic analysis such as sine sweep analysis to identify the range of speeds causing high vibrations and steady state vibration at a mode frequency of 1500 Hz is presented. The vibration analysis investigates the vibration of the FRG as a whole, which forms the contribution of this paper in the FRG literature.

关键词: flux reversal generator     air velocity     computation fluid dynamics     thermal analysis     vibration analysis     finite element analysis    

Nonlinear finite element analysis of short-limbed wall

Zhi ZHANG, Qian GU, Shaomin PENG, Quanzhi CAI

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 125-130 doi: 10.1007/s11709-009-0025-2

摘要: Combined with the actual project, this paper carries out a nonlinear finite element analysis on 2 groups, 6 short-limbed shear walls, through the finite element calculation software ANSYS. The stress-strain relation of the models, and the effects of the type of sections and the axial compression ratios on the models can be obtained, providing a reference for future design.

关键词: short-limbed wall (SLW)     nonlinear finite element     separate model     axial compression ratios    

Finite element analysis of creep for plane steel frames in fire

Hui ZHU, Yuching WU

《结构与土木工程前沿(英文)》 2012年 第6卷 第3期   页码 297-307 doi: 10.1007/s11709-012-0162-x

摘要: Steel is widely used for the construction of bridges, buildings, towers, and other structures because of its great strength, light weight, ductility, and ease of fabrication, but the cost of fireproofing is a major disadvantage. Therefore, the resistance of a steel structure to fire is a significant subject for modern society. In the past, for simplification, creep behavior was not taken into account in research on the resistance of a steel structure to fire. However, it was demonstrated that the effect of creep is considerable at temperatures that commonly reach 600°C and should not be neglected in this context. In this paper, a co-rotational total Lagrangian finite element formulation is derived, and the corresponding numerical model is developed to study the creep behavior of plane steel frames in fire conditions. The geometric nonlinearity, material nonlinearity, high temperature creep, and temperature rate of change are taken into account. To verify the accuracy and efficiency of the numerical model, four prototypical numerical examples are analyzed using this model, and the results show very good agreement with the solutions in the literature. Next, the numerical model is used to analyze the creep behavior of the plane steel frames under decreasing temperatures. The results indicate that the effect of creep is negligible at temperatures lower than 500°C and is considerable at temperatures higher than 500°C. In addition, the heating rate is a critical factor in the failure point of the steel frames. Furthermore, it is demonstrated that the deflection at the midpoint of the steel beam, considering creep behavior, is approximately 13% larger than for the situation in which creep is ignored. At temperatures higher than 500°C, the deformed steel member may recover approximately 20% of the total deflection. The application of the numerical model proposed in this paper is greatly beneficial to the steel industry for creep analysis, and the numerical results make a significant contribution to the understanding of resistance and protection for steel structures against disastrous fires.

关键词: creep     plane steel frame     fire     finite element method     geometric nonlinearity    

Uncertainty assessment in hydro-mechanical-coupled analysis of saturated porous medium applying fuzzyfinite element method

Farhoud KALATEH, Farideh HOSSEINEJAD

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 387-410 doi: 10.1007/s11709-019-0601-z

摘要: The purpose of the present study was to develop a fuzzy finite element method, for uncertainty quantification of saturated soil properties on dynamic response of porous media, and also to discrete the coupled dynamic equations known as - hydro-mechanical equations. Input parameters included fuzzy numbers of Poisson’s ratio, Young’s modulus, and permeability coefficient as uncertain material of soil properties. Triangular membership functions were applied to obtain the intervals of input parameters in five membership grades, followed up by a minute examination of the effects of input parameters uncertainty on dynamic behavior of porous media. Calculations were for the optimized combinations of upper and lower bounds of input parameters to reveal soil response including displacement and pore water pressure via fuzzy numbers. Fuzzy analysis procedure was verified, and several numerical examples were analyzed by the developed method, including a dynamic analysis of elastic soil column and elastic foundation under ramp loading. Results indicated that the range of calculated displacements and pore pressure were dependent upon the number of fuzzy parameters and uncertainty of parameters within equations. Moreover, it was revealed that for the input variations looser sands were more sensitive than dense ones.

关键词: fuzzy finite element method     saturated soil     hydro-mechanical coupled equations     coupled analysis     uncertainty analysis    

Total stress rapid drawdown analysis of the Pilarcitos Dam failure using the finite element method

Daniel R. VANDENBERGE

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 115-123 doi: 10.1007/s11709-014-0249-7

摘要: Rapid drawdown is a critical design condition for the upstream or riverside slope of earth dams and levees. A new total stress rapid drawdown method based on finite element analysis is used to analyze the rapid drawdown failure that occurred at Pilarcitos Dam in 1969. Effective consolidation stresses in the slope prior to drawdown are determined using linear elastic finite element analysis. Undrained strengths from isotropically consolidated undrained (ICU) triaxial compression tests are related directly to the calculated consolidation stresses and assigned to the elements in the model by interpolation. Two different interpretations of the undrained strength envelope are examined. Strength reduction finite element analyses are used to evaluate stability of the dam. Back analysis suggests that undrained strengths from ICU tests must be reduced by 30% for use with this rapid drawdown method. The failure mechanism predicted for Pilarcitos Dam is sensitive to the relationship between undrained strength and consolidation stress.

关键词: rapid drawdown     finite element     total stress     slope stability    

Vibration analysis of a simply supported beam under moving mass based on moving finite element method

Zhuchao YE, Huaihai CHEN,

《机械工程前沿(英文)》 2009年 第4卷 第4期   页码 397-400 doi: 10.1007/s11465-009-0044-7

摘要: In this paper, a moving finite element (MFE) method is proposed to perform the dynamic analysis of a simply supported beam for a moving mass (MM). The MFE method treats the moving mass as a moving part of the entire system, so that the transverse inertial effects caused by the moving mass may easily be taken into account. The solution to the beam’s dynamic behaviors including its displacement is obtained via a Newmark-β method; the effects of the velocity and weight of the MM on the beam’s dynamic behaviors are further discussed. The numerical examples show that the inertial effects of the MM significantly affect the transverse responses of the simply supported beam.

关键词: simply supported beam     moving mass (MM)     transverse vibration     moving finite element (MFE)    

Advanced finite element analysis of a complex deep excavation case history in Shanghai

Yuepeng DONG, Harvey BURD, Guy HOULSBY, Yongmao HOU

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 93-100 doi: 10.1007/s11709-014-0232-3

摘要: The construction of the North Square Shopping Center of the Shanghai South Railway Station is a large scale complex top-down deep excavation project. The excavation is adjacent to several current and newly planned Metro lines, and influenced by a neighboring Exchange Station excavation. The highly irregular geometry of this excavation greatly increases the complexity in 3D Finite Element modeling. The advanced numerical modeling described in this paper includes detailed structural and geotechnical behavior. Important features are considered in the analysis, e.g., 1) the small-strain stiffness of the soil, 2) the construction joints in the diaphragm wall, 3) the shrinkage in the concrete floor slabs and beams, 4) the complex construction sequences, and 5) the shape effect of the deep excavation. The numerical results agree well with the field data, and some valuable conclusions are generated.

关键词: advanced finite element analysis     deep excavations     case history     small-strain stiffness    

Acoustic analysis of lightweight auto-body based on finite element method and boundary element method

LIANG Xinhua, ZHU Ping, LIN Zhongqin, ZHANG Yan

《机械工程前沿(英文)》 2007年 第2卷 第1期   页码 99-103 doi: 10.1007/s11465-007-0017-7

摘要: A lightweight automotive prototype using alternative materials and gauge thickness is studied by a numerical method. The noise, vibration, and harshness (NVH) performance is the main target of this study. In the range of 1 150 Hz, the frequency response function (FRF) of the body structure is calculated by a finite element method (FEM) to get the dynamic behavior of the auto-body structure. The pressure response of the interior acoustic domain is solved by a boundary element method (BEM). To find the most contributing panel to the inner sound pressure, the panel acoustic contribution analysis (PACA) is performed. Finally, the most contributing panel is located and the resulting structural optimization is found to be more efficient.

关键词: harshness     automotive prototype     structural optimization     vibration     efficient    

IPMC gripper static analysis based on finite element analysis

Hanmin PENG, Yao HUI, Qingjun DING, Huafeng LI, Chunsheng ZHAO,

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 204-211 doi: 10.1007/s11465-010-0005-1

摘要: Recently, a type of flexible grippers with low power supply (0–5 V) has been designed and developed for grasping small but precision parts. In previous work, the authors manufactured a soft gripper whose actuating components are made of ionic polymer-metal composite (IPMC) materials; however, there is not a comprehensive model to analyze the complete mechanics for this IPMC gripper. Therefore, this paper provides a finite element method for analyzing its static mechanics characteristics in the state with maximal stress and strain (i.e., the gripper opening largest, including the IPMC deformation, stress, and strain). Further, these electromechanical coupling relationships can be simulated by using the piezoelectric analysis module based on ANSYS software. The simulation results show that the maximal tip displacement of IPMC strips can nearly reach their own free length, the maximal stress is 54 MPa in the center of copper electrodes, and the maximal strain is 0.0286 on the IPMC strip. The results provide detailed numerical solutions and appropriate finite element analysis methodologies beneficial for further research on the optimization design, forecast analysis, and control field.

关键词: ionic polymer-metal composite (IPMC)     artificial muscles     actuator     flexible gripper     finite element analysis     electromechanical coupling    

Temperature control of transfer roller’s bearing based on finite element analysis

Peng ZHANG, Yourong LI, Han XIAO

《机械工程前沿(英文)》 2009年 第4卷 第2期   页码 215-218 doi: 10.1007/s11465-009-0026-9

摘要: After a heat preservation cover is installed on the main rolling line, the heat dissipation environment of the transfer roller working on the heat preservation cover is changed. To ensure the normal production, a reasonable working jet capacity of the roller neck is derived. First, a globe model of the transfer roller is built for finite element analysis. Second, the sub-model of the fixed end bearing is built and the boundary condition of the sub-model is supplied by the results of the globe model. The analysis result of the sub-model shows that the temperature of the transfer roller bearing exceeds 85°C a rolling periodicity later. With finite element analysis, the heat flux is obtained and the minimum working jet capacity is derived.

关键词: transfer roller bearing     finite element analysis     sub-model     temperature control    

Dynamic failure analysis of concrete dams under air blast using coupled Euler-Lagrange finite element

Farhoud KALATEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 15-37 doi: 10.1007/s11709-018-0465-7

摘要: In this study, the air blast response of the concrete dams including dam-reservoir interaction and acoustic cavitation in the reservoir is investigated. The finite element (FE) developed code are used to build three-dimensional (3D) finite element models of concrete dams. A fully coupled Euler-Lagrange formulation has been adopted herein. A previous developed model including the strain rate effects is employed to model the concrete material behavior subjected to blast loading. In addition, a one-fluid cavitating model is employed for the simulation of acoustic cavitation in the fluid domain. A parametric study is conducted to evaluate the effects of the air blast loading on the response of concrete dam systems. Hence, the analyses are performed for different heights of dam and different values of the charge distance from the charge center. Numerical results revealed that 1) concrete arch dams are more vulnerable to air blast loading than concrete gravity dams; 2) reservoir has mitigation effect on the response of concrete dams; 3) acoustic cavitation intensify crest displacement of concrete dams.

关键词: air blast loading     concrete dams     finite element     dam-reservoir interaction     cavitation     concrete damage model    

3D finite element analysis of composite noise barrier constructed of polyurethane products

Ben DAEE,Hesham El NAGGAR

《结构与土木工程前沿(英文)》 2017年 第11卷 第1期   页码 100-110 doi: 10.1007/s11709-016-0364-8

摘要: This paper presents a numerical investigation on the structural performance of an innovative noise barrier consisting of poly-block, rigid polyurethane foam (RPF) and polyurea. The mechanical characteristics of RPF as well as the flexural resistance of the proposed wall system (poly-wall) were established and presented in another study. The experimental results are used in the current study to develop, calibrate and verify 3D finite element (FE) models of the wall system. The components of the poly-wall including steel rebars, poly-blocks and RPF cores were simulated and then verified using the results of experiments conducted on the wall components. The results of numerical analysis exhibited a satisfactory agreement with the experimental outcomes for the entire wall system. The verified numerical models were then used to conduct a parametric study on the performance of poly-wall models under uniform wind load and gravity load. The findings of the current study confirmed that the structural performance of poly-wall is satisfactory for noise barrier application. Simulation techniques for improvement of the numerical analysis of multi-martial 3D FE models were discussed.

关键词: 3D finite element     sound wall     rigid polyurethane foam     poly-wall     numerical model     calibration    

Finite element modeling of environmental effects on rigid pavement deformation

Sunghwan KIM,Halil CEYLAN,Kasthurirangan GOPALAKRISHNAN

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 101-114 doi: 10.1007/s11709-014-0254-x

摘要: In this study, finite element (FE)-based primary pavement response models are employed for investigating the early-age deformation characteristics of jointed plain concrete pavements (JPCP) under environmental effects. The FE-based ISLAB (two-and-one-half-dimensional) and EverFE (three-dimensional) software were used to conduct the response analysis. Sensitivity analyses of input parameters used in ISLAB and EverFE were conducted based on field and laboratory test data collected from instrumented pavements on highway US-34 near Burlington, Iowa. Based on the combination of input parameters and equivalent temperatures established from preliminary studies, FE analyses were performed and compared with the field measurements. Comparisons between field measured and computed deformations showed that both FE programs could produce reasonably accurate estimates of actual slab deformations due to environmental effects using the equivalent temperature difference concept.

关键词: jointed plain concrete pavements (JPCP)     curling and warping     sensitivity analyses     rigid pavement analysis and design     finite element analysis (FEA)    

Slope stability analysis based on a multigrid method using a nonlinear 3D finite element model

Yaoru LIU, Zhu HE, Bo LI, Qiang YANG

《结构与土木工程前沿(英文)》 2013年 第7卷 第1期   页码 24-31 doi: 10.1007/s11709-013-0190-1

摘要: The rigid-body limit equilibrium method cannot reflect the actual stress distribution in a rock mass, and the finite-element-based strength reduction method also has some problems with respect to convergence. To address these problems, a multi-grid method was adopted in this study to establish a structural grid for finite element computation and a slip surface grid for computing slope stability safety factors. This method can be used to determine the stability safety factor for any slip surface or slide block through a combination of nonlinear finite element analysis and limit equilibrium analysis. An ideal elastic–plastic incremental analysis method based on the Drucker–Prager yield criterion was adopted in the nonlinear finite element computation. Elasto-plastic computation achieves good convergence for both small load steps and large load steps and can increase computation precision to a certain extent. To increase the scale and accuracy of the computation, TFINE, a finite element parallel computation program, was used to analyze the influence of grid density on the accuracy of the computation results and was then applied to analysis of the stability of the Jinping high slope. A comparison of the results with results obtained using the rigid-body limit equilibrium method showed that the slope stability safety factors determined using finite element analysis were greater than those obtained using the rigid-body limit equilibrium method and were in better agreement with actual values because nonlinear stress adjustment was considered in the calculation.

关键词: slope     stability     multi-grid method     nonlinear     finite element method    

标题 作者 时间 类型 操作

Finite element analysis of controlled low strength materials

Vahid ALIZADEH

期刊论文

Flow, thermal, and vibration analysis using three dimensional finite element analysis for a flux reversal

B. VIDHYA,K. N. SRINIVAS

期刊论文

Nonlinear finite element analysis of short-limbed wall

Zhi ZHANG, Qian GU, Shaomin PENG, Quanzhi CAI

期刊论文

Finite element analysis of creep for plane steel frames in fire

Hui ZHU, Yuching WU

期刊论文

Uncertainty assessment in hydro-mechanical-coupled analysis of saturated porous medium applying fuzzyfinite element method

Farhoud KALATEH, Farideh HOSSEINEJAD

期刊论文

Total stress rapid drawdown analysis of the Pilarcitos Dam failure using the finite element method

Daniel R. VANDENBERGE

期刊论文

Vibration analysis of a simply supported beam under moving mass based on moving finite element method

Zhuchao YE, Huaihai CHEN,

期刊论文

Advanced finite element analysis of a complex deep excavation case history in Shanghai

Yuepeng DONG, Harvey BURD, Guy HOULSBY, Yongmao HOU

期刊论文

Acoustic analysis of lightweight auto-body based on finite element method and boundary element method

LIANG Xinhua, ZHU Ping, LIN Zhongqin, ZHANG Yan

期刊论文

IPMC gripper static analysis based on finite element analysis

Hanmin PENG, Yao HUI, Qingjun DING, Huafeng LI, Chunsheng ZHAO,

期刊论文

Temperature control of transfer roller’s bearing based on finite element analysis

Peng ZHANG, Yourong LI, Han XIAO

期刊论文

Dynamic failure analysis of concrete dams under air blast using coupled Euler-Lagrange finite element

Farhoud KALATEH

期刊论文

3D finite element analysis of composite noise barrier constructed of polyurethane products

Ben DAEE,Hesham El NAGGAR

期刊论文

Finite element modeling of environmental effects on rigid pavement deformation

Sunghwan KIM,Halil CEYLAN,Kasthurirangan GOPALAKRISHNAN

期刊论文

Slope stability analysis based on a multigrid method using a nonlinear 3D finite element model

Yaoru LIU, Zhu HE, Bo LI, Qiang YANG

期刊论文